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The concept of a best adiabatic potential is discussed. It is emphasized that it 
should be best for a number of states, not just for a single state. One particular 
figure of merit is introduced and applied to a simple model. 
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Recently the concept of a best adiabatic potential has been discussed from several 
points of view ([1] and references there;  also [2]). Denoting the electronic 
coordinates by y and the nuclear coordinates by Y, then given an electronic wave 
function 05 (y, Y) normalised according to 

I&i051 2= 1 (1) 

one determines an optimal nuclear wave function O(Y) by use of the trial function 

0(Y, y) = 0(Y)05(y, Y) (2) 

in the familiar variation method. The result is of course, assuming that 05 is real up 
to Y independent factors, that 0 should be an energy eigenfunction in the 
adiabatic potential U produced by 05 : 

U = I dy 05"H05 (3) 

where H is the total Hamiltonian. The question then is, is there some best choice 
for &? The standard adiabatic approximation specifies that 05 should be an 
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eigenfunction of the fixed nuclei problem, but it is natural to ask, can one do 
bet ter?  1 

First let us note that since [3, 4] any function of Y and y can be written in the form 
(2) (with (1)) it follows that if one tries [5] to determine both 0 and 4~ using the 
usual variation method then, assuming complete  flexibility, the result can only be 
that ~ should be an exact eigenfunction. Now for the ground state this may be a 
satisfactory result. However  this is not the case in general for excited states since it 
has been shown ([1] In an appendix we give a simple argument  leading to the same 
conclusions.) that the resulting 0 has a very non-intuitive f o r m -  it has no nodes 
for finite Y - and the associated U is correspondingly peculiar. 

Moreover  such an approach will almost inevitably lead to different U ' s  for 
different states whereas we would suggest, and indeed emphasize,  that the notion 
of a best adiabatic approximat ion should also include the requirement  that the 
same U should generate  a whole set of nuclear states. 

One way which suggests itself to implement  this idea is, instead of, say, minimizing 
the energy of a single state (and this, as we have noted, if carried through 
completely, will produce the exact ground state), to minimize the sum of the 
energies of the first N states. Thus we should minimize 

JN = F~ d Y  dy O*&HOnd~ (4) 
n= 0  

with respect to the 0n (assuming the 0n are or thonormal  this does just lead to the 
result that they should be the N lowest eigenfunctions in the potential  U provided 
by &), and with respect to 4~ (More generally one might weight the terms in (4) 
with positive weights.). 

To test this idea we have used the same coupled oscillator model  employed by 
other authors ([2], [3], [6]) 

0 2 1 0 2 
H =  -Oy 2 M Oy2 ~_y2+ y2+oey Y (5) 

where M, the "nuclear"  mass is assumed to be very large, and where o~ is a 
constant. The exact eigenfunctions and eigenvalues are easily found, and we will 
concentrate at tention on those which have the (almost wholly) electronic normal 
coordinate in its ground state. ~ 

As a first r emark  let us note that in [6] the U, there called U0, derived f rom the 
exact ground state eigenfunction is assumed d priori to be the best adiabatic 
potential.  However  though it gives the exact ground state energy, one finds that 

Given any set of energy levels one can always find a potential U (in fact many potentials) which will 
match them exactly. However, in the present context, this still leaves the question which we will not 
discuss further, can it be written in the form (3)? 
a Even for quite high excitation of the (almost wholly) nuclear normal coordinate these are still the 
lowest states of the system and hence [7] our approximate eigenvalues will be upper bounds to these 
exact energies. 
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for the first excited state and for all higher states it yields a less accurate energy 
than the standard adiabatic potential, there called U;.  Thus from the point of view 
of the present paper U~ is a better  potential than Uo. 

Turning now to the use of JN, to get some experience we have considered 

/ 1 \ 1 /4  1 
4~ = ( - - )  e -~(y+Bv)~ (6) 

~Tr/ 

where B is a real variational parameter  (B = a / 2  yields the standard adiabatic 
approximation). One then readily finds that 

U = ( I +2B___~_~) + ( I _ a B  + B 2 ) y 2 .  (7) 

(Note that the force constant is positive for all B provided that lal < 2 which we 
will henceforth assume.). U yields eigenvalues 

/1 - a B  + B2\  1/2 
E,~:[(I+2B~M)+(I-aB--+Ba)I/z]+2n~ ~4 ) (8) 

from which it follows that 

(9) 

Setting OJN/OB = 0 then yields as the equation for the optimal B 

B 1 (2B - a ) N  
M 1/2 ~ 2 (1 - o~B + B2) 1/2 - O. (10) 

Evidently for N ~ oo it yields 

B = o~/2, (11) 

i.e. the standard adiabatic result. However  for any finite N, (10) will yield a 
different value for B, one which will in turn yield a smaller J~ than provided by 
(11) and hence, to that extent, a better  U. If one examines the levels in more detail 
one finds that, through o r d e r  M -3/2, the order in which differences first appear, if 
N < N '  then E,z (N), the nth eigenvalue gotten using JN, is smaller than E ,  (N'), 
and hence 2 a better  approximation to the exact En, provided that 

n < N N ' / N  +N'. (12) 

Thus in particular the En(N) are individually more accurate than the standard 
adiabatic ones for n < N. However  we should also note that the standard adiabatic 
potential always gives better  level spacings. 

We have also looked briefly at a more complicated trial function 

4, = e -(A/2)(y+BY~2 (13) 
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with two variational parameters A and B. Here  we will note only that though 
again for N ~ 0% B takes on the value a /2 ,  A does n o t  become 1. 

It would be nice to say in conclusion that we have given a definitive answer to the 
question of determining the optimal U: minimize JN. However  quite apart from 
this still leaving open the question of what N to choose, there is also the 
possibility, as mentioned earlier, of replacing JN by other figures of merit. 
Nevertheless we think that what we have done does serve to make the point that 
however one defines a best potential, it should be in that sense best for a number of 
levels, not just one. 
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Appendix 

It seems plausible (note that the proof in [1] requires that one overlooks the 
possibility of a coincidence - see following their Eqs. (21) and (21') - i.e. it is also a 
plausibility argument) that because of the coupling between y and Y, an exact 
eigenfunction will not vanish identically in y for any finite Y (This is certainly the 
case in the coupled oscillator model.). Therefore  if the exact 0 has nodes at finite Y 
then the exact 4, must have compensating poles in Y. However  from (1) this is 
impossible, and therefore 0 cannot have such nodes. 
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